Part Number Hot Search : 
R186S C7943CA 4LVC2G SX100GD2 SZ3C107 SRF20200 B624R50 E105M
Product Description
Full Text Search
 

To Download ISP1301 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ISP1301
Universal Serial Bus On-The-Go transceiver
Rev. 01 -- 14 April 2004 Product data
1. General description
The ISP1301 is a Universal Serial Bus (USB) On-The-Go (OTG) transceiver device that is fully compliant with Universal Serial Bus Specification Rev. 2.0 and On-The-Go Supplement to the USB Specification Rev. 1.0a. The ISP1301 can transmit and receive serial data at both full-speed (12 Mbit/s) and low-speed (1.5 Mbit/s) data rates. It is ideal for use in portable electronics devices, such as mobile phones, digital still cameras, digital video cameras, Personal Digital Assistants (PDAs) and digital audio players. It allows USB Application Specific Integrated Circuits (ASICs), Programmable Logic Devices (PLDs) and any system chip set (with the USB host or device function built-in but without the USB physical layer) to interface to the physical layer of the USB. The ISP1301 can interface to devices with digital I/O voltages in the range of 1.65 V to 3.6 V. The ISP1301 is available in HVQFN24 package.
2. Features
s Fully complies with: x Universal Serial Bus Specification Rev. 2.0 x On-The-Go Supplement to the USB 2.0 Specification Rev. 1.0a x On-The-Go Transceiver Specification (CEA-2011) Rev. 1.0 s Can transmit and receive serial data at both full-speed (12 Mbit/s) and low-speed (1.5 Mbit/s) data rates s Ideal for system ASICs or chip sets with built-in USB OTG dual-role core s Supports mini USB analog car kit interface s Supports various serial data interface protocols; transparent general-purpose buffer mode allows you to control the direction of data transfer s Supports data line and VBUS pulsing session request s Contains Host Negotiation Protocol (HNP) command and status registers s Supports serial I2C-busTM interface for OTG status and command controls s 2.7 V to 4.5 V power supply input range for the ISP1301 s Built-in charge pump regulator outputs 5 V at current greater than 8 mA s Supports external charge pump s Supports wide range interfacing I/O voltage (VDD_LGC = 1.65 V to 3.6 V) for digital control logics
Philips Semiconductors
ISP1301
USB OTG transceiver
s 8 kV built-in electrostatic discharge (ESD) protection on the DP, DM, VBUS and ID lines s Full industrial grade operation from -40 C to +85 C s Available in a small HVQFN24 (4 x 4 mm2) halogen-free and lead-free package.
3. Applications
s s s s Mobile phone Digital camera Personal digital assistant Digital video recorder.
4. Abbreviations
ASIC -- Application-Specific Integrated Circuit ATX -- Analog USB transceiver HNP -- Host Negotiation Protocol ESD -- ElectroStatic Discharge I2C-bus -- Inter IC-bus IC -- Integrated Circuit OTG -- On-The-Go PDA -- Personal Digital Assistant SE0 -- Single-Ended zero SOF -- Start-of-Frame SRP -- Session Request Protocol USB -- Universal Serial Bus USB-IF -- USB Implementers Forum.
5. Ordering information
Table 1: Type number Ordering information Package Name Description Version plastic thermal enhanced very thin quad flat package; SOT616-1 no leads; 24 terminals; body 4 x 4 x 0.85 mm
ISP1301BS HVQFN24
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
2 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
6. Block diagram
VDD_LGC VREG(3V3) VBAT C2 C1
24
7 3.3 V DC-DC REGULATOR
20
22
21 23 19
VBUS CHARGE PUMP
CGND VBUS
ISP1301
VBUS COMPARATORS
SCL SDA ADR/PSW INT_N
3 2 1 5 SERIAL CONTROLLER 9 14 13 12 11 10 6 8
ID DETECTOR
18
ID
OE_N/INT_N DAT/VP SE0/VM RCV VP VM SPEED SUSPEND
LEVEL SHIFTER
PULL-UP AND PULL-DOWN RESISTORS
CARKIT INTERRUPT DETECTOR 15
RESET_N
4
USB TRANSCEIVER exposed die pad 17
DM DP
16
004aaa195
DGND
AGND
Fig 1. Block diagram.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
3 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
7. Pinning information
7.1 Pinning
VDD_LGC
CGND
C2
24 ADR/PSW SDA SCL RESET_N INT_N SPEED 1 2 3
C1
VBAT 20
23
22
21
19 18 17 16 ID AGND DP DM DAT/VP SE0/VM
004aaa542
ISP1301BS 4 5 6 7 VREG(3V3) 8 SUSPEND 9 OE_N/INT_N 10 VM 11 VP 12 RCV 15 14 13
Fig 2. Pin configuration HVQFN24 (top view).
OE_N/INT_N
VREG(3V3)
SUSPEND
7 SPEED INT_N RESET_N SCL SDA ADR/PSW 6 5 4
8
9
10
11
12 13 SE0/VM DAT/VP DM DP AGND ID
004aaa196
DGND (exposed die pad) ISP1301BS
RCV
VM
VP
VBUS
14 15 16
3 terminal 1 2 1 24
VDD_LGC
17 18 23
CGND
22
C2
21
C1
20
VBAT
19
VBUS
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Bottom view
Fig 3. Pin configuration HVQFN24 (bottom view).
9397 750 11355
Product data
Rev. 01 -- 14 April 2004
4 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
7.2 Pin description
Table 2: Symbol[2] ADR/PSW Pin description[1] Pin 1 Type[3] I/O Reset value high-Z Description ADR input -- sets the least-significant I2C-bus address bit of the ISP1301; latched-on reset (including power-on reset) PSW output -- enables or disables the external charge pump after reset bidirectional; push-pull input; three-state output SDA SCL RESET_N INT_N SPEED 2 3 4 5 6 I/OD I/OD I OD I high-Z high-Z high-Z serial I2C-bus data input and output bidirectional; push-pull input; open-drain output serial I2C-bus clock input and output bidirectional; push-pull input; open-drain output asynchronous reset; active LOW push-pull input interrupt output; active LOW open-drain output speed selection input for the ATX; effective when bit SPD_SUSP_CTRL = 0:
* *
VREG(3V3) 7 P -
LOW: low-speed HIGH: full-speed.
push-pull input output of the internal voltage regulator; an external decoupling capacitor of 0.1 F is required suspend selection input for ATX; effective when bit SPD_SUSP_CTRL = 0:
SUSPEND
8
I
-
* *
OE_N/ INT_N 9 I/O high-Z
LOW: normal operating HIGH: suspend.
push-pull input OE_N input -- enable driving DP and DM when in the USB mode INT_N output -- interrupt (push pull) when suspended and bit OE_INT_EN = 1 bidirectional; push-pull input; three-state output VM VP RCV 10 11 12 O O O 0 single-ended DM receiver output push-pull output single-ended DP receiver output push-pull output differential receiver output; reflects the differential value of DP and DM push-pull output
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
5 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
Pin description[1]...continued Pin 13 Type[3] I/O Reset value -[4] Description SE0 (input and output) -- SE0 function in DAT_SE0 USB mode VM (input and output) -- VM function in VP_VM USB mode bidirectional; push-pull input; three-state output
Table 2: Symbol[2] SE0/VM
DAT/VP
14
I/O
-[4]
DAT (input and output) -- DAT function in DAT_SE0 USB mode VP (input and output) -- VP function in VP_VM USB mode bidirectional; push-pull input; three-state output
DM DP AGND ID
15 16 17 18
AI/O AI/O P AI/O
-
USB data minus pin (D-) USB data plus pin (D+) analog ground identification detector input and output; connected to the ID pin of the USB mini receptacle VBUS line input and output of the USB interface; place an external decoupling capacitor of 0.1 F close to this pin supply voltage (2.7 V to 4.5 V) charge pump capacitor pin 1; typically use a 100 nF capacitor between pins C1 and C2 charge pump capacitor pin 2; typically use a 100 nF capacitor between pins C1 and C2 ground for the charge pump supply voltage for the interface logic signals (1.65 V to 3.6 V) digital ground
VBUS
19
AI/O
-
VBAT C1 C2 CGND VDD_LGC DGND
20 21 22 23 24
P AI/O AI/O P P
-
exposed P die pad
[1] [2] [3] [4]
A detailed description of these pins can be found in Section 8.9. Symbol names ending with underscore N (for example, NAME_N) indicate active LOW signals. I = input; O = output; I/O = digital input/output; OD = open-drain output; AI/O = analog input/output; P = power or ground pin. High-Z when pin OE_N/INT_N is LOW. Driven LOW when pin OE_N/INT_N is HIGH.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
6 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
8. Functional description
8.1 Serial controller
The serial controller includes the following functions:
* * * * * *
I2C-bus slave interface Interrupt generator Mode Control registers OTG registers Interrupt related registers Device identification registers.
The serial controller acts as an I2C-bus slave, and uses the SCL and SDA pins to communicate with the OTG controller. For more details on serial controller, see Section 11.
8.2 VBUS charge pump
The charge pump supplies current to the VBUS line. It can operate in any of the following modes:
* Output 5 V at current greater than 8 mA * Pull-up VBUS to 3.3 V through a resistor (RVBUS(PU)) for initiating VBUS pulsing SRP * Pull-down VBUS to ground through a resistor (RVBUS(PD)) for discharging VBUS
before initiating SRP.
8.3 VBUS comparators
VBUS comparators provide indications regarding the voltage level on VBUS. 8.3.1 VBUS valid comparator This comparator is used by an A-device to determine whether or not the voltage on VBUS is at a valid level for operation. The minimum threshold for the VBUS valid comparator is 4.4 V. Any voltage on VBUS below this threshold is considered to be a fault. During power up, it is expected that the comparator output will be ignored. 8.3.2 Session valid comparator The session valid comparator is a TTL-level input that determines when VBUS is high enough for a session to start. Both the A-device and the B-device use this comparator to detect when a session is being started. The A-device also uses this comparator to indicate when a session is completed. The session valid threshold of the ISP1301 is between 0.8 V and 2.0 V. 8.3.3 Session end comparator The session end comparator determines when VBUS is below the B-device session end threshold of 0.2 V to 0.8 V.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
7 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
8.4 ID detector
In either the active or suspended power mode, the ID detector senses the condition of the ID line and differentiates between the following three conditions:
* Pin ID is floating; bit ID_FLOAT = 1 * Pin ID is shorted to ground; bit ID_GND = 1 * Pin ID is connected to ground through resistor RACC_ID; bit ID_FLOAT = 0 and bit
ID_GND = 0. The ID detector also has a switch that can be used to ground pin ID. This switch is controlled by bit ID_PULLDOWN in the serial controller.
8.5 Pull-up and pull-down resistors
The pull-up and pull-down resistors include the following switchable resistors:
* * * *
Pin DP pull-up Pin DP pull-down Pin DM pull-up Pin DM pull-down.
The pull-up resistor is a context variable as described in the ECN_27%_Resistor document. The variable pull-up resistor hardware is implemented to meet the USB ECN_27% specification.
8.6 USB transceiver (ATX)
The behavior of the USB transceiver depends on the operation mode of the ISP1301:
* In the USB mode, the USB transceiver block performs USB full-speed or
low-speed transceiver functions. This includes differential driver, differential receiver and single-ended receivers.
* In the transparent general purpose buffer mode or the UART mode, the USB
transceiver block functions as a level shifter between the pins DAT/VP and SE0/VM and the pins DP and DM.
8.7 3.3 V DC-DC regulator
The built-in 3.3 V DC-DC regulator conditions the supply voltage (VBAT) for use in the ISP1301:
* VBAT = 3.6 V to 4.5 V: the regulator will output 3.3 V 10 % * VBAT < 3.6 V: the regulator will be bypassed.
The output of the regulator can be monitored on the VREG(3V3) pin.
8.8 Car kit interrupt detector
The car kit interrupt detector is a comparator that detects when the DP line is below the car kit interrupt threshold VPH_CR_INT (0.4 V to 0.6 V). The car kit interrupt detector is enabled in the audio mode only (bit AUDIO_EN = 1).
9397 750 11355 (c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
8 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
8.9 Detailed description of pins
8.9.1 ADR/PSW The ADR/PSW pin has two functions. On reset (including power-on reset), the level on this pin is latched as ADR_REG, which represents the least significant bit (LSB) of the I2C address of the ISP1301. If bit ADR_REG = 0, the I2C-bus address for the ISP1301 is 0101100 (0x2C); if bit ADR_REG = 1, the I2C-bus address for the ISP1301 is 0101101 (0x2D). After reset, the ADR/PSW pin can be programmed as an output. If in the Mode Control 2 register bit PSW_OE = 1, then the ADR/PSW output will be enabled. The logic level will be determined by bit ADR_REG. If bit ADR_REG = 0, then the ADR/PSW pin will drive HIGH. If bit ADR_REG = 1, then the ADR/PSW pin will drive LOW. The ADR/PSW pin can be used to turn on or off the external charge pump. The ISP1301 built-in charge pump supports VBUS current at 8 mA. If the application needs more current support (for example, 50 mA), an external charge pump may be needed. In this case, the ADR/PSW pin can act as a power switch for the external charge pump. Figure 4 shows an example of using external charge pump.
+3.3 V
100 k ADR/PSW
VBAT
VIN
VOUT 4.7 F
VBUS ID DM DP
ISP1301 VBUS
CHARGE PUMP
ON/OFF
GND
004aaa437
Fig 4. Using external charge pump.
8.9.2
SCL and SDA The SCL (serial clock) and SDA (serial data) signals implement a two-wire serial I2C-bus.
8.9.3
RESET_N Active LOW asynchronous reset for all digital logic. Either connect this pin to VDD_LGC for power-on reset or apply a minimum of 10 s LOW pulse for hardware reset.
8.9.4
INT_N The INT_N (interrupt) pin is asserted while an interrupt condition exists. It is deasserted when the Interrupt Latch register is cleared. The INT_N pin is open-drain, and, therefore, can be connected using a wired-AND with other interrupt signals.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
9 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
8.9.5
OE_N/INT_N Pin OE_N/INT_N is normally an input to the ISP1301. When bit TRANSP_EN = 0 and bit UART_EN = 0, the OE_N/INT_N pin controls the direction of DAT/VP, SE0/VM, DP and DM as indicated in Table 4. When suspended (either pin SUSPEND = HIGH or bit SUSPEND_REG = 1) and bit OE_INT_EN = 1, pin OE_N/INT_N becomes a push-pull output (active LOW) to indicate the interrupt condition.
8.9.6
SE0/VM, DAT/VP, RCV, VM and VP The ISP1301 transmits USB data on the USB line under the following conditions:
* Bit TRANSP_EN = 0 * Bit UART_EN = 0 * Pin OE_N/INT_N = LOW.
Table 10 shows the operation of the SE0/VM and DAT/VP pins during the transmit operation. The RCV pin is not used during transmit. The ISP1301 receives USB data from the USB line under the following conditions:
* Bit TRANSP_EN = 0 * Bit UART_EN = 0 * Pin OE_N/INT_N = HIGH.
Table 12 shows the operation of the SE0/VM, DAT/VP and RCV pins during the receive operation. The VP and VM pins are single-ended receiver outputs of the DP and DM pins, respectively. 8.9.7 DP and DM The DP (data plus) and DM (data minus) pins implement the USB data signals. When in the transparent general-purpose buffer mode, the ISP1301 operates as a level shifter between the (DAT/VP, SE0/VM) and (DP, DM) pins. 8.9.8 ID The ID (identification) pin is connected to the ID pin on the USB mini receptacle. An internal pull-up resistor (to VREG(3V3)) is connected to this pin. When bit ID_PULLDOWN is set, the ID pin will be shorted to ground. 8.9.9 VBUS This pin acts as an input to the VBUS comparator or an output from the charge pump. When the VBUS_DRV bit of the OTG Control register is asserted, the ISP1301 tries to drive VBUS to a voltage of 4.4 V to 5.25 V with an output current capability of at least 8 mA.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
10 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
8.9.10
VBAT This pin is an input and supplies power to the ISP1301. The ISP1301 operates when VBAT is between 2.7 V and 4.5 V.
8.9.11
C1 and C2 The C1 and C2 pins are for connecting the flying capacitor of the charge pump. The output current capacity of the charge pump depends on the value of the capacitor. For maximum efficiency, place capacitors as close as possible to the pins.
C1 Cext
C2 ISP1301 VBUS
004aaa278
IL
Fig 5. Charge pump capacitor. Table 3: Cext 47 nF 100 nF
[1] [2]
Recommended charge pump capacitor value IL (max)[1] 8 mA 18 mA[2]
For output voltage VBUS > 4.7 V (bit VBUS_VLD = 1). For VBAT = 3.0 V to 4.5 V.
8.9.12
VDD_LGC This pin is an input and sets logic thresholds. It also powers the pads of the following logic pins:
* * * * * * * * *
8.9.13
ADR/PSW DAT/VP, SE0/VM and RCV VM and VP INT_N OE_N/INT_N RESET_N SPEED SUSPEND SCL and SDA.
AGND, CGND and DGND AGND, CGND and DGND are ground pins for analog, charge pump and digital circuits, respectively. These pins can be connected separately or together depending on the system performance requirements.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
11 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
9. Modes of operation
There are four types of modes in the ISP1301:
* * * *
Power modes Direct I2C-bus mode USB modes Transparent modes.
9.1 Power modes
The power modes of the ISP1301 are as follows:
* Active power mode: power is on. * USB suspend mode: to reduce power consumption, the USB differential receiver is
powered down.
* Global power-down mode: set bit GLOBAL_PWR_DN = 1 of the Mode Control 2
register; the differential transmitter and receiver, clock generator, charge pump, and all biasing circuits are turned off to reduce power consumption to the minimum possible; for details on waking up the clock, see Section 12.
9.2 Direct I2C-bus mode
In the direct I2C-bus mode, an external I2C-bus master (OTG controller) directly communicates with the serial controller through the SCL and SDA lines. The serial controller has a built-in I2C-bus slave function. In this mode, an external I2C-bus master can access the internal registers of the device (Status, Control, Interrupt, and so on) through the I2C-bus interface. The supported I2C-bus bit rate is 100 kbit/s (maximum). The ISP1301 is in the direct I2C-bus mode when either bit TRANSP_EN bit = 0 or pin OE_N/INT_N is deasserted.
9.3 USB modes
The four USB modes of the ISP1301 are:
* * * *
VP_VM unidirectional mode VP_VM bidirectional mode DAT_SE0 unidirectional mode DAT_SE0 bidirectional mode.
In the VP_VM USB mode, the DAT/VP pin is used for the VP function, the SE0/VM pin is used for the VM function, and the RCV pin is used for the RCV function. In the DAT_SE0 USB mode, the DAT/VP pin is used for the DAT function, the SE0/VM pin is used for the SE0 function, and the RCV pin is not used. In the unidirectional mode, the DAT/VP and SE0/VM pins are always inputs. In the bidirectional mode, the direction of these signals depends on the OE_N/INT_N input.
9397 750 11355 (c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
12 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
Table 6 specifies the functionality of the device during the four USB modes. The ISP1301 is in the USB mode when both the TRANSP_EN and UART_EN bits are cleared.
9.4 Transparent modes
9.4.1 Transparent general-purpose buffer mode In the transparent general-purpose buffer mode, the DAT/VP and SE0/VM pins are connected to the DP and DM pins, respectively. Using bits TRANSP_BDIR1 and TRANSP_BDIR0 of the Mode Control 2 register as specified in Table 8, you can control the direction of data transfer. The ISP1301 is in the transparent general-purpose buffer mode if bit TRANSP_EN = 1 and bit DAT_SE0 = 1. 9.4.2 Transparent UART mode When in the transparent UART mode, the ATX behaves as two logic level translator between the following pins:
* For TxD signal: from SE0/VM (VDD_LGC level) to DM (+3.3 V level) * For RxD signal: from DP (+3.3 V level) to DAT/VP (VDD_LGC level).
In the UART mode, the OTG controller is allowed to connect a UART to the DAT/VP and SE0/VM pins of the ISP1301. The UART mode is entered by setting the UART_EN bit in the Mode Control 1 register. The UART mode is equivalent to one of the transparent general purpose buffer mode (bit TRANSP_BDIR1 = 1, bit TRANSP_BDIR0 = 0). 9.4.3
Table 4: Mode
Summary tables
Device operating modes USB Bit suspend DAT condition[1] _SE0 X X X X X 1 X X 1 X Pin OE_N/ INT_N X HIGH X X X X X Bit Bit TRANSP UART _EN _ EN 0 1 1 0 0 1 X X X X 0 0 0 1 see Table 5 and Table 7 ATX is fully functional; see Table 6 ATX is not functional; see Table 8 DAT/VP <= DP (RxD signal of UART) SE0/VM => DM (TxD signal of UART); ATX is not functional Description
Direct I2C-bus mode Direct I2C-bus mode
USB modes USB suspend mode USB functional mode Transparent modes Transparent general-purpose buffer mode Transparent UART mode X X 1 0
[1]
Conditions: a) bit SPD_SUSP_CTRL = 0 and pin SUSPEND = HIGH, or b) bit SPD_SUSP_CTRL = 1 and bit SUSPEND_REG = 0.
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
9397 750 11355
Product data
Rev. 01 -- 14 April 2004
13 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
USB suspend mode: I/O Function can be driven if pin OE_N/INT_N is active LOW, otherwise high-Z[1] can be driven if pin OE_N/INT_N is active LOW, otherwise high-Z[1] can be driven depending on bit VBUS_DRV connected to SCL I/O of the I2C-bus slave connected to SDA I/O of the I2C-bus slave
Table 5: Pin
DP as output DM as output VBUS SCL SDA
[1]
In the USB suspend mode, the ISP1301 can drive the DP and DM lines, if the OE_N/INT_N input (when the OE_INT_EN bit is not set) is LOW. In such a case, these outputs are driven as in the USB functional modes, but with the full-speed characteristics, irrespective of the value of the SPEED input pin or the SPEED_REG bit.
Table 6: USB mode
USB functional modes: I/O values[1] Bit DAT_SE0 BI_DI 0 1 1 0 1 1 Pin OE_N/ INT_N X LOW HIGH X LOW HIGH DAT/VP TxD+[2] TxD+[2] RxD+[3] TxD[4] TxD[4] RxD[6] SE0/VM TxD-[2] TxD-[2] RxD-[3] FSE0[5] FSE0[5] RSE0[7] VP RxD+[3] VM RxD-[3] RCV RxD[3]
VP_VM
unidirectional bidirectional
0 0 0 1 1 1
DAT_SE0
unidirectional bidirectional
[1] [2] [3] [4] [5] [6] [7]
Some of the modes and signals are provided to achieve backward compatibility with IP cores. TxD+ and TxD- are single-ended inputs for driving the DP and DM outputs, respectively, in the single-ended mode. RxD+ and RxD- are the outputs of the single-ended receivers connected to DP and DM, respectively. TxD is the input for driving DP and DM in the DAT_SE0 mode. FSE0 is for forcing an SE0 on the DP and DM lines in the DAT_SE0 mode. RxD is the output of the differential receiver. RSE0 is an output indicating that an SE0 has been received on the DP and DM lines.
Table 7:
USB suspend mode: I/O values Output pin DAT/VP LOW HIGH LOW HIGH LOW HIGH LOW HIGH SE0/VM HIGH LOW LOW LOW LOW LOW HIGH HIGH VP LOW HIGH LOW HIGH LOW HIGH LOW HIGH VM LOW LOW HIGH HIGH LOW LOW HIGH HIGH RCV LOW LOW LOW LOW LOW LOW LOW LOW DP DM LOW LOW HIGH HIGH LOW LOW HIGH HIGH
USB suspend mode Input pin DAT_SE0 (bit DAT_SE0 = 1) LOW HIGH LOW HIGH VP_VM (bit DAT_SE0 = 0) LOW HIGH LOW HIGH
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
14 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
Transparent general-purpose buffer mode
Table 8:
Bit Direction of the data flow TRANSP_BDIR[1:0] 00 01 10 11 DAT/VP => DP DAT/VP => DP DAT/VP <= DP DAT/VP <= DP SE0/VM => DM SE0/VM <= DM SE0/VM => DM SE0/VM <= DM
10. USB transceiver
10.1 Differential driver
The operation of the driver is described in Table 9. The register bits and the pins used in the column heading are described in Section 11.1 and Section 8.9, respectively.
Table 9: Suspend[1] Transceiver driver operation setting Bit Pin TRANSP_ OE_N/ EN INT_N 0 0 LOW LOW Bit DAT_SE0 0 1 Differential driver
0 0
output value from DAT/VP to DP and SE0/VM to DM output value from DAT/VP to DP and DM if SE0/VM is 0; otherwise, drive both DP and DM LOW output value from DAT/VP to DP and DM high-Z high-Z
1 X X
[1]
0 X 1
LOW HIGH X
X X X
Can be controlled by using either the SUSPEND pin or the SUSPEND_REG bit.
Table 10: USB mode DAT_SE0
USB functional mode: transmit operation Input pin DAT/VP LOW HIGH LOW HIGH SE0/VM LOW LOW HIGH HIGH LOW LOW HIGH HIGH Output pin DP LOW HIGH LOW LOW LOW HIGH LOW HIGH DM HIGH LOW LOW LOW LOW LOW HIGH HIGH
VP_VM
LOW HIGH LOW HIGH
10.2 Differential receiver
Table 11 describes the operation of the differential receiver. The register bits and the pins used in the column heading are described in Section 11.1 and Section 8.9, respectively.
9397 750 11355 (c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
15 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
The detailed behavior of the receive transceiver operation is given in Table 12.
Table 11: Suspend[1] 1 X X 0 0
[1]
Differential receiver operation settings Bit TRANSP_EN X X 1 0 0 Pin OE_N/INT_N X LOW X HIGH HIGH Bit DAT_SE0 X X X 1 0 Differential receiver 0 0 0 output differential value from DP and DM to DAT/VP and RCV output differential value from DP and DM to RCV
Can be controlled by using either the SUSPEND pin or the SUSPEND_REG bit.
Table 12: USB mode DAT_SE0 DAT_SE0 DAT_SE0 DAT_SE0 DAT_SE0 DAT_SE0 DAT_SE0 DAT_SE0 VP_VM VP_VM VP_VM VP_VM VP_VM VP_VM VP_VM VP_VM
[1]
USB functional mode: receive operation Suspend[1] 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 Input pin DP LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH DM LOW LOW HIGH HIGH LOW LOW HIGH HIGH LOW LOW HIGH HIGH LOW LOW HIGH HIGH Output pin DAT/VP RCV HIGH LOW RCV LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH SE0/VM HIGH LOW LOW LOW HIGH LOW LOW LOW LOW LOW HIGH HIGH LOW LOW HIGH HIGH RCV last value of RCV HIGH LOW last value of RCV LOW LOW LOW LOW last value of RCV HIGH LOW last value of RCV LOW LOW LOW LOW
Can be controlled by using either the SUSPEND pin or the SUSPEND_REG bit.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
16 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
11. Serial controller
11.1 Register map
Table 13 provides an overview of the serial controller registers.
Table 13: Register Vendor ID Product ID Version ID Mode Control 1 Mode Control 2 OTG Control OTG Status Interrupt Source Interrupt Latch Interrupt Enable Low Interrupt Enable High Serial controller registers Width (bits) 16 16 16 8 8 8 8 8 8 8 8 Access[1] Memory address Functionality R R R R/S/C R/S/C R/S/C R R R/S/C R/S/C R/S/C 00-01H 02-03H 14-15H Set -- 04H Clear -- 05H Set -- 12H Clear -- 13H Set -- 06H Clear -- 07H 10H 08H Set -- 0AH Clear -- 0BH Set -- 0CH Clear -- 0DH Set -- 0EH Clear -- 0FH
[1] The R/S/C access type represents a field that can be read, set or cleared (set to 0). A register can be read from either of the indicated addresses--set or clear. Writing logic 1 to the set address causes the associated bit to be set. Writing logic 1 to the clear address causes the associated bit to be cleared. Writing logic 0 to an address has no effect.
Reference
device identification registers Section 11.1.1 on page 17
mode control registers
Section 11.1.2 on page 18
OTG registers
Section 11.1.3 on page 19
interrupt related registers
Section 11.1.4 on page 20
11.1.1
Device identification registers Vendor ID register (Read: 00H-01H): Table 14 provides the bit allocation of the Vendor ID register.
Table 14: Bit 15 to 0 Vendor ID register: bit description Symbol VENDORID [15:0] Access R Value 04CCH Description Philips Semiconductors' Vendor ID
Product ID register (Read: 02H-03H): The bit allocation of this register is given in Table 15.
Table 15: Bit 15 to 0 Product ID register: bit description Symbol PRODUCTID [15:0] Access R Value 1301H Description Product ID of the ISP1301
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
17 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
Version ID register (Read: 14H-15H): Table 16 shows the bit allocation of this register.
Table 16: Bit 15 to 0 Version ID register: bit description Symbol VERSIONID [15:0] Access R Value 0210H Description Version number of the ISP1301
11.1.2
Mode control registers Mode Control 1 register (Set/Clear: 04H/05H): The bit allocation of the Mode Control 1 register is given in Table 17.
Table 17: Bit Symbol Reset Access
Mode Control 1 register: bit allocation 7 R/S/C 6 UART_EN 0 R/S/C Table 18: Bit 7 6 5 4 3 2 1 UART_EN OE_INT_EN BDIS_ACON_EN TRANSP_EN DAT_SE0 SUSPEND_REG 5 OE_INT_ EN 0 R/S/C 4 BDIS_ ACON_EN 0 R/S/C 3 TRANSP_ EN 0 R/S/C 2 DAT_SE0 0 R/S/C 1 SUSPEND _REG 0 R/S/C 0 SPEED_ REG 0 R/S/C
Mode Control 1 register: bit description Symbol Description reserved When set, the ATX is in the transparent UART mode. When set and when in the suspend mode, pin OE_N/INT_N becomes an output and is asserted when an interrupt occurs. Enables the A-device to connect if the B-device disconnect is detected; see Section 11.3 When set, the ATX is in the transparent mode. 0 -- VP_VM mode 1 -- DAT_SE0 mode; see Table 6 and Table 7 Sets the ISP1301 in the suspend mode, if bit SPD_SUSP_CTRL = 1. 0 -- active-power mode 1 -- USB suspend mode
0
SPEED_REG
Sets the rise time and the fall time of the transmit driver in USB modes, if bit SPD_SUSP_CTRL = 1. 0 -- USB low-speed mode 1 -- USB full-speed mode
Mode Control 2 register (Set/Clear: 12H/13H): For the bit allocation of this register, see Table 19.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
18 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
Table 19: Bit Symbol Reset Access
Mode Control 2 register: bit allocation 7 EN2V7 0 R/S/C 6 PSW_OE 0 R/S/C Table 20: Bit 7 6 5 5 AUDIO_EN 0 R/S/C 4 TRANSP_ BDIR1 0 R/S/C 3 TRANSP_ BDIR0 0 R/S/C 2 BI_DI 1 R/S/C 1 SPD_SUSP _CTRL 0 R/S/C 0 GLOBAL_ PWR_DN 0 R/S/C
Mode Control 2 register: bit description Symbol EN2V7 PSW_OE AUDIO_EN Description 0 -- VBAT = 3.0 V to 4.5 V 1 -- VBAT = 2.7 V to 4.5 V 0 -- ADR/PSW pin acts as an input 1 -- ADR/PSW pin is driven 0 -- SE receiver is enabled; cr_int detector is disabled 1 -- SE receiver is turned off (pin VP = LOW, pin VM = LOW); cr_int detector is enabled
4 to 3 2
TRANSP_BDIR[1:0] controls the direction of data transfer in the transparent general-purpose buffer mode; see Table 8 BI_DI 0 -- direction of DAT/VP and SE0/VM are fixed (transmit only) 1 -- direction of DAT/VP and SE0/VM are controlled by pin OE_N/INT_N; see Table 6
1
SPD_SUSP_CTRL
control of speed and suspend in USB modes: 0 -- controlled by pins SPEED and SUSPEND 1 -- controlled by bit SPEED_REG and bit SUSPEND_REG of the Mode Control 1 register
0
GLOBAL_PWR_DN 0 -- normal operation 1 -- sets the ISP1301 to the power down mode Activities on the I2C-bus or any OTG event can wake up the chip; see Section 12
11.1.3
OTG registers OTG Control register (Set/Clear: 06H/07H): Table 21 provides the bit allocation of the OTG Control register.
Table 21: Bit Symbol Reset Access
OTG Control register: bit allocation 7 VBUS_ CHRG 0 R/S/C 6 VBUS_ DISCHRG 0 R/S/C 5 VBUS_ DRV 0 R/S/C 4 ID_PULL DOWN 0 R/S/C 3 DM_PULL DOWN 1 R/S/C 2 DP_PULL DOWN 1 R/S/C 1 DM_PULL UP 0 R/S/C 0 DP_PULL UP 0 R/S/C
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
19 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
OTG Control register: bit description Description charge VBUS through a resistor to 3.3 V discharge VBUS through a resistor to ground drive VBUS to 5 V through the charge pump connect the ID pin to ground connect DM pull-down resistor to ground connect DP pull-down resistor to ground connect DM pull-up resistor to 3.3 V connect DP pull-up resistor to 3.3 V
Table 22: Bit 7 6 5 4 3 2 1 0
Symbol VBUS_CHRG VBUS_DISCHRG VBUS_DRV ID_PULLDOWN DM_PULLDOWN DP_PULLDOWN DM_PULLUP DP_PULLUP
OTG Status register (Read: 10H): Table 23 shows the bit allocation of the OTG Status register.
Table 23: Bit Symbol Reset Access OTG Status register: bit allocation 7 B_SESS_ VLD 0 R 6 B_SESS_ END 0 R Table 24: Bit 7 6 5 to 0 0 R 0 R 0 R 5 4 3 reserved 0 R 0 R 0 R 2 1 0
OTG Status register: bit description Symbol B_SESS_VLD B_SESS_END Description set when the VBUS voltage is above the B-device session valid threshold (2.0 V to 4.0 V) set when the VBUS voltage is below the B-device session end threshold (0.2 V to 0.8 V) reserved
11.1.4
Interrupt related registers Interrupt Source register (Read: 08H): This register indicates the current state of the signals that can generate an interrupt. The bit allocation of the Interrupt Source register is given in Table 25.
Table 25: Bit Symbol Reset Access
Interrupt Source register: bit allocation 7 CR_INT 0 R 6 BDIS_ ACON 0 R 5 ID_FLOAT 0 R 4 DM_HI 0 R 3 ID_GND 0 R 2 DP_HI 0 R 1 0 SESS_VLD VBUS_VLD 0 R 0 R
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
20 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
Interrupt Source register: bit description Description DP pin is above the car kit interrupt threshold (0.4 V to 0.6 V) set when bit BDIS_ACON_EN is set, and the ISP1301 asserts bit DP_PULLUP after detecting the B-device disconnect ID pin is floating DM pin is HIGH ID pin is connected to ground DP pin is HIGH session valid comparator; threshold = 0.8 V to 2.0 V A-device VBUS valid comparator; threshold > 4.4 V
Table 26: Bit 7 6 5 4 3 2 1 0
Symbol CR_INT BDIS_ACON ID_FLOAT DM_HI ID_GND DP_HI SESS_VLD VBUS_VLD
Interrupt Latch register (Set/Clear: 0AH/0BH): This register indicates the source that generated the interrupt. The bit allocation of the Interrupt Latch register is given in Table 27.
Table 27: Bit Symbol Reset Access Interrupt Latch register: bit allocation 7 CR_INT 0 R/S/C 6 BDIS_ ACON 0 R/S/C Table 28: Bit 7 6 5 4 3 2 1 0 5 ID_FLOAT 0 R/S/C 4 DM_HI 0 R/S/C 3 ID_GND 0 R/S/C 2 DP_HI 0 R/S/C 1 0 SESS_VLD VBUS_VLD 0 R/S/C 0 R/S/C
Interrupt Latch register: bit description Symbol CR_INT BDIS_ACON ID_FLOAT DM_HI ID_GND DP_HI SESS_VLD VBUS_VLD Description interrupt for CR_INT status change interrupt for BDIS_ACON status change interrupt for ID_FLOAT status change interrupt for DM_HI status change interrupt for ID_GND status change interrupt for DP_HI status change interrupt for SESS_VLD status change interrupt for VBUS_VLD status change
Interrupt Enable Low register (Set/Clear: 0CH/0DH): This register enables interrupts on transition from true to false. For the bit allocation of this register, see Table 29.
Table 29: Bit Symbol Reset Access Interrupt Enable Low register: bit allocation 7 CR_INT 0 R/S/C 6 BDIS_ ACON 0 R/S/C 5 ID_FLOAT 0 R/S/C 4 DM_HI 0 R/S/C 3 ID_GND 0 R/S/C 2 DP_HI 0 R/S/C 1 0 SESS_VLD VBUS_VLD 0 R/S/C 0 R/S/C
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
21 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
Interrupt Enable Low register: bit description Description interrupt enable for CR_INT status change from 1 to 0 interrupt enable for BDIS_ACON status change from 1 to 0 interrupt enable for ID_FLOAT status change from 1 to 0 interrupt enable for DM_HI status change from 1 to 0 interrupt enable for ID_GND status change from 1 to 0 interrupt enable for DP_HI status change from 1 to 0 interrupt enable for SESS_VLD status change from 1 to 0 interrupt enable for VBUS_VLD status change from 1 to 0
Table 30: Bit 7 6 5 4 3 2 1 0
Symbol CR_INT BDIS_ACON ID_FLOAT DM_HI ID_GND DP_HI SESS_VLD VBUS_VLD
Interrupt Enable High register (Set/Clear: 0EH/0FH): The Interrupt Enable High register enables interrupts on transition from FALSE to TRUE. Table 31 provides the bit allocation of this register.
Table 31: Bit Symbol Reset Access Interrupt Enable High register: bit allocation 7 CR_INT 0 R/S/C 6 BDIS_ ACON 0 R/S/C Table 32: Bit 7 6 5 4 3 2 1 0 5 ID_FLOAT 0 R/S/C 4 DM_HI 0 R/S/C 3 ID_GND 0 R/S/C 2 DP_HI 0 R/S/C 1 0 SESS_VLD VBUS_VLD 0 R/S/C 0 R/S/C
Interrupt Enable High register: bit description Description interrupt enable for CR_INT status change from 0 to 1 interrupt enable for BDIS_ACON status change from 0 to 1 interrupt enable for ID_FLOAT status change from 0 to 1 interrupt enable for DM_HI status change from 0 to 1 interrupt enable for ID_GND status change from 0 to 1 interrupt enable for DP_HI status change from 0 to 1 interrupt enable for SESS_VLD status change from 0 to 1 interrupt enable for VBUS_VLD status change from 0 to 1
Symbol CR_INT BDIS_ACON ID_FLOAT DM_HI ID_GND DP_HI SESS_VLD VBUS_VLD
11.2 Interrupts
Table 26 indicates the signals that can generate interrupts. Any of the signals given in Table 26 can generate an interrupt when the signal becomes either LOW or HIGH. After an interrupt has been generated, the OTG controller should be able to read the status of each signal and the bit that indicates whether or not that signal generated the interrupt. A bit in the Interrupt Latch register is set when any of these occurs:
* Writing logic 1 to its set address causes the corresponding bit to be set * The corresponding bit in the Interrupt Enable High register is set, and the
associated signal changes from LOW to HIGH
* The corresponding bit in the Interrupt Enable Low register is set, and the
associated signal changes from HIGH to LOW.
9397 750 11355 (c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
22 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
The Interrupt Latch register bit is cleared by writing logic 1 to its clear address.
11.3 Autoconnect
The Host Negotiation Protocol (HNP) in the OTG supplement specifies the following sequence of events to transfer the role of the host from the A-device to the B-device: 1. The A-device puts the bus in the suspend state 2. The B-device simulates a disconnect by deasserting its DP pull-up 3. The A-device detects SE0 on the bus, and asserts its DP pull-up 4. The B-device detects that the DP line is HIGH, and takes the role of the host. The OTG supplement specifies that the time between the B-device deasserting its DP pull-up and the A-device asserting its pull-up must be less than 3 ms. For an A-device with a slow interrupt response time, 3 ms may not be enough time to write an I2C-bus command to the ISP1301 to assert the DP pull-up. An alternative method is for the A-device transceiver to automatically assert the DP pull-up after detecting an SE0 from the B-device. The sequence of events is as follows: After finishing data transfers between the A-device and the B-device and before suspending the bus, the A-device sends SOFs. The B-device receives these SOFs, and does not transmit any packet back to the A-device. During this time, the A-device sets the BDIS_ACON_EN bit in the ISP1301. This enables the ISP1301 to look for SE0 whenever the A-device is not transmitting (that is, whenever the OE_N/INT_N pin of the ISP1301 is not asserted). After the BDIS_ACON_EN bit is set, the A-device stops transmitting SOFs and allows the bus to go to the idle state. If the B-device disconnects, the bus goes to SE0, and the ISP1301 logic automatically turns on the A-device pull-up.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
23 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
12. Clock wake up scheme
This section explains the ISP1301 clock stop timing, events triggering the clock to wake up, and the timing of the clock wake up.
12.1 Power down event
The clock is stopped when the GLOBAL_PWR_DN bit is set. It takes approximately 8 ms for the clock to stop from the time the power down condition is detected. The clock always stops at its falling edge. The waveform is given in Figure 6.
SCL GLOBAL_PWR_DN CLOCK
8 ms
004aaa217
Fig 6. Clock stopped using the GLOBAL_PWR_DN bit.
12.2 Clock wake up events
The clock wakes up when any of the following events occur on the ISP1301 pins:
* SCL goes LOW * VBUS goes above the session valid threshold (0.8 V to 2.0 V), provided the
SESS_VLD bit in the Interrupt Enable High register is set.
* ID changes when mini-A plug is inserted, provided the ID_FLOAT bit in the
Interrupt Enable Low register is set.
* ID changes when mini-A plug is removed, provided the ID_FLOAT bit in the
Interrupt Enable High register is set.
* DP goes HIGH, provided the DP_HI bit in the Interrupt Enable High register is set. * DM goes HIGH, provided the DM_HI bit in the Interrupt Enable High register is set.
The event triggers the clock to start and a stable clock is guaranteed after about six clock periods, which is approximately 8 s. The startup analog clock time is 10 s. Therefore, the total estimated start time after a triggered event is about 20 s. The clock will always start at its rising edge. Waveforms of the clock wake up because of different events are given in Figure 7, Figure 8, Figure 9, Figure 10 and Figure 11.
SCL
CLOCK
20 s
004aaa218
Fig 7. Clock wake up using SCL.
9397 750 11355 (c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
24 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
SESS_VLD
CLOCK 20 s
004aaa219
Fig 8. Clock wake up by VBUS.
ID_FLOAT
CLOCK 20 s
004aaa220
Fig 9. Clock wake up by ID change (1).
ID_FLOAT CLOCK 20 s
004aaa221
Fig 10. Clock wake up by ID change (2).
DP_HI or DM_HI CLOCK 20 s
004aaa434
Fig 11. Clock wake up by data line SRP.
When an event is triggered and the clock is started, it will remain active for 8 ms. If the GLOBAL_PWR_DN bit is not cleared within this 8 ms period, the clock will stop. If the clock wakes up because of any event other than SCL going LOW, an interrupt will be generated once the clock is active.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
25 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
13. I2C-bus protocol
For detailed information, refer to The I2C-bus specification; version 2.1.
13.1 I2C-bus byte transfer format
Table 33: S I2C-bus byte transfer format[1] A Byte 2 8 bits A Byte 3 8 bits A ... ... A P 8 bits
[1]
Byte 1
S = Start; A = Acknowledge; P = Stop.
13.2 I2C-bus device address
Table 34: Bit Name Value Table 35: Bit 7 to 1 Device address byte 1 7 A6 0 6 A5 1 5 A4 0 4 device address A3 1 A2 1 A1 0 A0 X 3 2 1 0 R/W X
Bit description Symbol Description A[6:0] Device address: The device address of the ISP1301 is: 0101 10 (A0). The value of A0 (LSB) is loaded from pin ADR/PSW during reset (including power-on reset). If pin ADR/PSW = HIGH, bit A0 = 1; otherwise bit A0 = 0.
0
R/W
Read/write command. 0 -- write 1 -- read.
13.3 Write format
A write operation can be performed as:
* One-byte write to the specified register address * Multi-byte write to N consecutive registers, starting from the specified start
address. N defines the number of registers to write. If N = 1, only the start register is written. 13.3.1 One-byte write Figure 12 illustrates the byte sequence.
Table 36: Byte S Device select ACK Transfer format description for one-byte write Description master starts with a START condition master transmits device address and write command bit R/W = 0 slave generates an acknowledgment
Register address K master transmits address of register K
9397 750 11355 (c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
26 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
Transfer format description for one-byte write...continued Description slave generates an acknowledgment master writes data to register K slave generates an acknowledgment master generates a STOP condition
Table 36: Byte ACK
Write data K ACK P
13.3.2
Multiple-byte write Figure 12 illustrates the byte sequence.
Table 37: Byte S Device select ACK Transfer format description for multiple-byte write Description master starts with a START condition master transmits device address and write command bit R/W = 0 slave generates an acknowledgment
Register address K master transmits address of register K. This is the start address for writing multiple data bytes to consecutive registers. After a byte is written, the register address is automatically incremented by 1. Remark: If the master writes to a non existent register, the slave must send a 'not ACK' and also must not increment the index address. ACK Write data K ACK Write data K + 1 ACK : Write data K+N-1 slave generates an acknowledgment master writes data to register K slave generates an acknowledgment master writes data to register K + 1 slave generates an acknowledgment : master writes data to register K + N - 1. When the incremented address K + N - 1 becomes > 255, the register address rolls over to 0. Therefore, it is possible that some registers may be overwritten, if the transfer is not stopped before the rollover. slave generates an acknowledgment master generates a STOP condition
ACK P
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
27 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
ACK S DEVICEselect device SELECT register address K
ACK write data K
ACK P
WR
One-byte write
ACK S DEVICE SELECT device select
WR
ACK register address K write data K
ACK write data K + 1
ACK
ACK DEVICE SELECT write data K + 2 write data K + 3
ACK
ACK write data K + N - 1
ACK P
.... maximum, rollover to 0
004aaa213
Multiple-byte write
Fig 12. Writing data to the ISP1301 registers.
13.4 Read format
A read operation can be performed in two ways:
* Current address read: to read the register at the current address.
- Single register read.
* Random address read: to read N registers starting at a specified address.
N defines the number of registers to be read. If N = 1, only the start register is read. - Single register read - Multiple register read. 13.4.1 Current address read Figure 13 illustrates the byte sequence.
Table 38: Byte S Device select ACK Read data K Transfer format description for current address read Description master starts with a START condition master transmits device address and read command bit R/W = 1 slave generates an acknowledgment slave transmits and master reads data from register K. If the start address is not specified, the read operation starts from where the index register is pointing to because of a previous read or write operation. master terminates the read operation by generating a No Acknowledge master generates a stop condition
No ACK P
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
28 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
ACK S DEVICE select device SELECT read data K
No ACK P
RD
Current address read
004aaa215
Fig 13. Current address read.
13.4.2
Random address read Single read: Figure 14 illustrates the byte sequence.
Table 39: SDA line S Device select ACK ACK Device select ACK Read data K No ACK P Transfer format description for single-byte read Description master starts with a START condition master transmits device address and writes command bit R/W = 0 slave generates an acknowledgment slave generates an acknowledgment master transmits device address and read command bit R/W = 1 slave generates an acknowledgment slave transmits and master reads data from register K master terminates the read operation by generating a No Acknowledge master generates a STOP condition
Register address K master transmits (start) address of register K to be read from
Multiple read: Figure 14 illustrates the byte sequence.
Table 40: SDA line S Device select ACK ACK Device select ACK Read data K ACK Read data K + 1 ACK : Read data K+N-1 No ACK P
9397 750 11355
Transfer format description for multiple-byte read Description master starts with a START condition master transmits device address and write command bit R/W = 0 slave generates an acknowledgment slave generates an acknowledgment master transmits device address and read command bit R/W = 1 slave generates an acknowledgment slave transmits and master reads data from register K. After a byte is read, the address is automatically incremented by 1. slave generates an acknowledgment slave transmits and master reads data from register K + 1 slave generates an acknowledgment : slave transmits and master reads data register K + N - 1. This is the last register to read. After incrementing, the address rolls over to 0. Here, N represents the number of addresses available in the slave. master terminates the read operation by generating a No Acknowledge master generates a STOP condition
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Register address K master transmits (start) address of register K to be read from
Product data
Rev. 01 -- 14 April 2004
29 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
ACK S
ACK register address K S DEVICE SELECT device select
RD
ACK read data K
No ACK P
device select DEVICE SELECT
WR
Random address single read
ACK S DEVICE SELECT device select
WR
ACK register address K S device select DEVICE SELECT
RD
ACK read data K
ACK
ACK DEVICE SELECT read data K + 1 read data K + 2
ACK
ACK write data K + N - 1
No ACK P
.... maximum, rollover to 0
Random access multiple read
004aaa214
Fig 14. Random address read.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
30 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
14. Limiting values
Table 41: Absolute maximum ratings In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol VBAT VDD_LGC VI Ilu Vesd Parameter supply voltage I/O supply voltage input voltage latch-up current electrostatic discharge voltage ILI < 1 A pins DP, DM, ID, VBUS, AGND, CGND and DGND all other pins Tstg
[1]
[1]
Conditions
Min -0.5 -0.5
Max +5.5 +4.6 VDD_LGC + 0.5 100 +8
Unit V V V mA kV
VI = -1.8 V to +5.4 V
-0.5 -8
-2 -60
+2 +125
kV C
storage temperature
Equivalent to discharging a 100 pF capacitor through a 1.5 k resistor (Human Body Model). A 4.7 F capacitor is needed from VREG(3V3) and VBUS to ground.
15. Recommended operating conditions
Table 42: Symbol VBAT VDD_LGC VI VI(AI/O) VO(OD) Tamb
[1]
Recommended operating conditions Parameter supply voltage I/O supply voltage input voltage input voltage on analog I/O pins DP and DM open-drain output pull-up voltage on pins SCL, SDA and INT_N ambient temperature
[1]
Conditions
Min 2.7 1.65 0 0 0 -40
Typ -
Max 4.5 3.6 3.6 3.6 +85
Unit V V V V C
VDD_LGC V
VDD_LGC should be less than or equal to VBAT.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
31 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
16. Static characteristics
Table 43: Static characteristics: supply pins VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; Tamb = -40 C to +85 C; unless otherwise specified. Symbol VREG(3V3) IBAT Parameter regulated supply voltage output operating supply current Conditions VBAT = 3.0 V to 4.5 V VBAT = 2.7 V to 3.0 V transmitting and receiving at 12 Mbit/s; CL = 50 pF on pins DP and DM transmitting and receiving at 12 Mbit/s idle: VDP > 2.7 V, VDM < 0.3 V; SE0: VDP < 0.3 V, VDM < 0.3 V idle, SE0 or suspend
[3] [2] [1]
Min 3.0 2.7 -
Typ 4
Max 3.6 3.0 8
Unit V V mA
Charge pump disabled
IDD_LGC IBAT(idle) IDD_LGC(static) IBAT(pd) IBAT(cp)
operating I/O supply current supply current during full-speed idle and SE0 static I/O supply current
[2]
-
1 -
2 300 20 20 20 300
mA A A A mA A
[3]
power down mode supply current bit GLOBAL_PWR_DN = 1 operating supply current for the charge pump ILOAD = 8 mA; ATX is idle ILOAD = 0 mA; ATX is idle
Charge pump enabled
[1] [2] [3]
In the suspend mode, the minimum voltage is 2.7 V. Maximum value characterized only, not tested in production. Excluding any load current to the 1.5 k and 15 k pull-up and pull-down resistors (200 A typical).
Table 44: Static characteristics: digital pins VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; Tamb = -40 C to +85 C; unless otherwise specified. Symbol Input levels VIL VIH Output levels VOL VOH LOW-level output voltage HIGH-level output voltage IOL = 2 mA IOL = 100 A IOH = 2 mA IOH = 100 A Leakage current ILI IOZ Capacitance CIN
[1]
[1]
Parameter LOW-level input voltage HIGH-level input voltage
Conditions
Min 0.6VDD_LGC VDD_LGC - 0.4 VDD_LGC - 0.15 -1 -5
Typ -
Max 0.3VDD_LGC 0.4 0.15 +1 +5 10
Unit V V V V V V A A pF
input leakage current OFF-state output current input capacitance
Not applicable for open-drain outputs.
Open-drain outputs
pin to GND
-
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
32 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
Table 45: Static characteristics: analog I/O pins DP and DM VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; Tamb = -40 C to +85 C; unless otherwise specified. Symbol Input levels VDI VCM VIL VIH Output levels VOL VOH LOW-level output voltage HIGH-level output voltage RL of 1.5 k to +3.6 V RL of 15 k to GND VBAT = 3.0 V to 4.5 V VBAT = 2.7 V to 3.0 V Leakage current ILZ Capacitance CIN Resistance RPD RPU_DP RPU_DM ZDRV ZINP Termination VTERM termination voltage for the upstream port pull-up resistor (RPU) 3.0 3.6 V pull-down resistor on pins DP and DM pull-up resistor on pin DP pull-up resistor on pin DM driver output impedance input impedance bus idle bus driven bus idle bus driven steady-state drive
[1]
Parameter differential input sensitivity differential common mode voltage LOW-level input voltage HIGH-level input voltage
Conditions |VI(DP) - VI(DM)| includes VDI range
Min 0.2 0.8 2.0 2.8 2.6 -1
Typ -
Max 2.5 0.8 0.3 3.6 3.0 +1 10 24.8 1575 3090 1575 3090 44 -
Unit V V V V V V V A pF k M
OFF-state leakage current transceiver capacitance pin to GND
14.25 900 1425 900 1425 34 10
[1]
Includes external series resistors of 33 1 % each on DP and DM.
Table 46: Static characteristics: analog I/O pin ID VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; Tamb = -40 C to +85 C; unless otherwise specified. Symbol Resistance RPU_ID RPD_ID pull-up resistor on pin ID to VREG(3V3) impedance to GND bit ID_PULLDOWN = 1 77 130 10 k Parameter Conditions Min Typ Max Unit
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
33 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
Table 46: Static characteristics: analog I/O pin ID...continued VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; Tamb = -40 C to +85 C; unless otherwise specified. Symbol RA_ID RB_ID RACC_ID Parameter A-device ID impedance to GND B-device ID impedance to GND Accessory device ID impedance to GND Conditions bit ID_GND = 1 bit ID_FLOAT = 1 bit ID_GND = 0; bit ID_FLOAT = 0 Min 800 20 Typ Max 1 200 Unit k k k
Table 47: Static characteristics: charge pump VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; Tamb = -40 C to +85 C; unless otherwise specified. Symbol Current ILOAD Voltage VBUS VBUS(LEAK) Vth(VBUSVLD) Vth(SESSEND) Vhys(SESSEND) Vth(SESSVLD) Vhys(SESSVLD) Vth(BSESSVLD) regulated VBUS output voltage VBUS leakage voltage VBUS valid threshold VBUS session end comparator threshold VBUS session end comparator hysteresis VBUS session valid comparator threshold VBUS session valid comparator hysteresis VBUS session valid comparator threshold for the B-device for the B-device ILOAD = 8 mA; VBAT = 3 V connect to VREG(3V3) when VBUS_CHRG = 1 connect to GND when VBUS_DISCHRG = 1 ID pin connected to GND ILOAD = 8 mA; Cext = 100 nF charge pump disabled 4.65 4.4 0.2 0.8 2.0 460 660 40 5 150 200 200 75 5.25 0.2 4.65 0.8 2.0 4.0 1000 1200 100 V V V V mV V mV V mV % k maximum load current Cext = 100 nF; VBUS = 4.7 V 8.0 mA Parameter Conditions Min Typ Max Unit
Vhys(BSESSVLD) VBUS session valid comparator hysteresis E Resistance RVBUS(PU) RVBUS(PD) RVBUS(IDLE_A) VBUS pull-up resistor VBUS pull-down resistor VBUS idle impedance for A-device efficiency when loaded
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
34 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
17. Dynamic characteristics
Table 48: Dynamic characteristics: reset and clock VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; Tamb = -40 C to +85 C; unless otherwise specified. Symbol Reset tW(RESET_N) fclk pulse width on input RESET_N clock frequency bit GLOBAL_PWR_DN = 0 10 700 1000 1300 s kHz Internal clock Parameter Conditions Min Typ Max Unit
Table 49: Dynamic characteristics: digital I/O pins VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; CL = 50 pF; RPU = 1.5 k on DP to VTERM; Tamb = -40C to +85 C; unless otherwise specified. Symbol tTOI Parameter bus turnaround time (OE_N/INT_N to DAT/VP and SE0/VM) bus turnaround time (OE_N/INT_N to DAT/VP and SE0/VM) Conditions output-to-input; see Figure 19 input-to-output; see Figure 19 Min 0 Typ Max 5 Unit ns
tTIO
0
-
5
ns
Table 50: Dynamic characteristics: analog I/O pins DP and DM VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; CL = 50 pF; RPU = 1.5 k on DP to VTERM; Tamb = -40 C to +85 C; unless otherwise specified. Symbol tFR Parameter rise time Conditions CL = 50 pF to 125 pF; 10 % to 90 % of |VOH - VOL|; see Figure 15 CL = 50 pF to 125 pF; 90 % to 10 % of |VOH - VOL|; see Figure 15 excluding the first transition from idle state excluding the first transition from idle state; see Figure 16 LOW-to-HIGH; see Figure 16 and Figure 20 HIGH-to-LOW; see Figure 16 and Figure 20 HIGH-to-OFF; see Figure 17 and Figure 21 LOW-to-OFF; see Figure 17 and Figure 21 OFF-to-HIGH; see Figure 17 and Figure 21
[1]
Min 4
Typ -
Max 20
Unit ns
Driver characteristics
tFF
fall time
4
-
20
ns
FRFM VCRS
differential rise/fall time matching (tFR/tFF) output signal crossover voltage
90 1.3
-
111.1 2.0
% V
Driver timing tPLH(drv) tPHL(drv) tPHZ tPLZ tPZH driver propagation delay (DAT/VP, SE0/VM to DP, DM) driver propagation delay (DAT/VP, SE0/VM to DP, DM) driver disable delay (OE_N/INT_N to DP, DM) driver disable delay (OE_N/INT_N to DP, DM) driver enable delay (OE_N/INT_N to DP, DM) 18 18 15 15 15 ns ns ns ns ns
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
35 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
Table 50: Dynamic characteristics: analog I/O pins DP and DM...continued VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; CL = 50 pF; RPU = 1.5 k on DP to VTERM; Tamb = -40 C to +85 C; unless otherwise specified. Symbol tPZL Parameter driver enable delay (OE_N/INT_N to DP, DM) Conditions OFF-to-LOW; see Figure 17 and Figure 21 Min Typ Max 15 Unit ns
Receiver timing Differential receiver tPLH(rcv) tPHL(rcv) propagation delay (DP, DM to RCV) propagation delay (DP, DM to RCV) propagation delay (DP, DM to VP and DAT/VP, VM and SE0/VM) propagation delay (DP, DM to VP and DAT/VP, VM and SE0/VM) LOW-to-HIGH; see Figure 18 and Figure 22 HIGH-to-LOW; see Figure 18 and Figure 22 LOW-to-HIGH; see Figure 18 and Figure 22 HIGH-to-LOW; see Figure 18 and Figure 22 15 15 ns ns
Single-ended receiver tPLH(se) 18 ns
tPHL(se)
-
-
18
ns
[1]
Characterized only; not tested. Limits guaranteed by design.
1.8 V logic input
t FR, t LR VOH 90 % 90 % t FF, t LF
0.9 V
0.9 V
0V t PLH(drv) VOH differential data lines VCRS VCRS t PHL(drv)
10 % VOL
10 %
MGS963
VOL
MGS964
Fig 15. Rise and fall times.
1.8 V logic input 0V t PZH t PZL VOH differential data lines VOL VCRS VOL +0.3 V
MGS966
Fig 16. Timing of DAT/VP and SE0/VM to DP and DM.
2.0 V
0.9 V
0.9 V
differential data lines 0.8 V
VCRS
VCRS
t PHZ t PLZ VOH -0.3 V
t PLH(rcv) t PLH(se) VOH logic output VOL 0.9 V
t PHL(rcv) t PHL(se)
0.9 V
MGS965
Fig 17. Timing of OE_N/INT_N to DP and DM.
Fig 18. Timing of DP and DM to RCV, VP or DAT/VP and VM or SE0/VM.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
36 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
OE_N/INT_N
t TOI
t TIO
DAT/VP SE0/VM
output
input
output
004aaa439
Fig 19. SIE interface bus turnaround timing.
VTERM VREG(3V3) D.U.T. 1.5 k DP or DM 33 CL 15 k test point
004aaa448
Load capacitance CL = 50 pF (minimum or maximum timing).
Fig 20. Load on pins DP and DM.
test point 33 D.U.T. 50 pF V
MBL142
500
V = 0 V for tPZH and tPHZ. V = VREG(3V3) for tPZL and tPLZ.
Fig 21. Load on pins DP and DM for enable and disable times.
test point D.U.T. 25 pF
MGS968
Fig 22. Load on pins VM, SE0/VM, VP, DAT/VP and RCV.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
37 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
Characteristics of I/O stages of I2C-bus lines (SDA, SCL) Parameter SCL clock frequency hold time for the START condition LOW period of the SCL clock HIGH period of the SCL clock set-up time for the START condition data set-up time data hold time rise time of SDA and SCL signals fall time of SDA and SCL signals set-up time for the STOP condition bus free time between a STOP and START condition Standard mode Min Max 100 1000 300 kHz s s s s ns s ns ns s s 4.0 4.7 4.0 4.7 250 0 4.0 4.7 Unit
Table 51: Symbol fSCL tHD;STA tLOW tHIGH tSU;STA tSU;DAT tHD:DAT tr tf tSU;STO tBUF
SDA tf
tf
tLOW
tr
tSU;DAT
tHD;STA
tSP
tr
tBUF
SCL tHD;STA tSU;STA tSU;STO
S
tHD;DAT
tHIGH
Sr
P
S
004aaa216
Fig 23. Definition of timing for standard-mode devices on the I2C-bus.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
38 of 46
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x
Product data Rev. 01 -- 14 April 2004
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved. 9397 750 11355
18. Application information
Philips Semiconductors
VDD_LGC VBAT R1 10 k SW1 VDD_LGC VDD_LGC C1 1 F SW-PB
C10 0.1 F VDD_LGC R8 100 k SDA SCL INT_N R2 3.3 k R3 3.3 k R4 10 k R5 10 k R9 100 k 1 2 ADR/PSW VDD_LGC CGND C2 C1 VBAT 24 23 22 21 20 19 18 17 16 15 14 13 C6 0.1 F C7 22 pF C4 0.1 F
C2 0.1 F
SDA 3 SCL RESET_N INT_N SPEED
4 5 6 7 8
OTG CONTROLLER
ISP1301
VBUS ID AGND DP DM
5 4 R6 33 R7 33 3 2 1
GND ID D+
VREG(3V3) SUSPEND OE_N/INT_N VM DGND VP RCV
OE_N SE0 DAT C5 0.1 F 9 10 11 12
USB MINI-AB
D- RECEPTACLE VBUS SHIELD SHIELD SHIELD 8 SHIELD 9
DAT/VP SE0/VM
C8 22 pF
C9 4.7 F
6
7
USB OTG transceiver
004aaa348
ISP1301
39 of 46
Fig 24. Application diagram for the OTG controller with DAT_SE0 SIE interface.
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x
Product data Rev. 01 -- 14 April 2004
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved. 9397 750 11355
Philips Semiconductors
VDD_LGC VBAT R1 10 k SW1 VDD_LGC VDD_LGC C1 1 F SW-PB
C10 0.1 F VDD_LGC R8 100 k SDA SCL INT_N R2 3.3 k R3 3.3 k R4 10 k R5 10 k R9 100 k 1 2 ADR/PSW VDD_LGC CGND C2 C1 VBAT 24 23 22 21 20 19 18 17 16 15 14 13 C6 0.1 F C7 22 pF C4 0.1 F
C3 0.1 F
SDA 3 SCL RESET_N INT_N SPEED
4 5 6 7 8
OTG CONTROLLER
ISP1301
VBUS ID
5 4 R6 33 R7 33 3 2 1
GND ID D+ USB MINI-AB D- RECEPTACLE VBUS SHIELD SHIELD SHIELD 8 SHIELD 9
VREG(3V3) SUSPEND OE_N/INT_N VM DGND VP RCV
OE_N 9 RCV VM VP C5 0.1 F 10 11 12
AGND DP DM DAT/VP SE0/VM
C8 22 pF
C9 4.7 F
6
7
USB OTG transceiver
004aaa438
ISP1301
40 of 46
Fig 25. Application diagram for the OTG controller with VP_VM SIE interface.
Philips Semiconductors
ISP1301
USB OTG transceiver
19. Package outline
HVQFN24: plastic thermal enhanced very thin quad flat package; no leads; 24 terminals; body 4 x 4 x 0.85 mm SOT616-1
D
B
A
terminal 1 index area A A1 E c
detail X
e1
1/2 e
C b 12 vMCAB wMC 13 e y1 C y
e 7 L 6
Eh
1/2 e
e2
1
18
terminal 1 index area
24 Dh 0
19 X 2.5 scale 5 mm
DIMENSIONS (mm are the original dimensions) UNIT mm A(1) max. 1 A1 0.05 0.00 b 0.30 0.18 c 0.2 D (1) 4.1 3.9 Dh 2.25 1.95 E (1) 4.1 3.9 Eh 2.25 1.95 e 0.5 e1 2.5 e2 2.5 L 0.5 0.3 v 0.1 w 0.05 y 0.05 y1 0.1
Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. OUTLINE VERSION SOT616-1 REFERENCES IEC --JEDEC MO-220 JEITA --EUROPEAN PROJECTION ISSUE DATE 01-08-08 02-10-22
Fig 26. HVQFN24 package outline.
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
41 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
20. Soldering
20.1 Introduction to soldering surface mount packages
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages (document order number 9398 652 90011). There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended. In these situations reflow soldering is recommended.
20.2 Reflow soldering
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing. Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method. Typical reflow peak temperatures range from 215 to 270 C depending on solder paste material. The top-surface temperature of the packages should preferably be kept:
* below 225 C (SnPb process) or below 245 C (Pb-free process)
- for all BGA, HTSSON..T and SSOP..T packages - for packages with a thickness 2.5 mm - for packages with a thickness < 2.5 mm and a volume 350 mm3 so called thick/large packages.
* below 240 C (SnPb process) or below 260 C (Pb-free process) for packages with
a thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages. Moisture sensitivity precautions, as indicated on packing, must be respected at all times.
20.3 Wave soldering
Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems. To overcome these problems the double-wave soldering method was specifically developed. If wave soldering is used the following conditions must be observed for optimal results:
* Use a double-wave soldering method comprising a turbulent wave with high
upward pressure followed by a smooth laminar wave.
9397 750 11355 (c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
42 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
* For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board; - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves at the downstream end.
* For packages with leads on four sides, the footprint must be placed at a 45 angle
to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Typical dwell time of the leads in the wave ranges from 3 to 4 seconds at 250 C or 265 C, depending on solder material applied, SnPb or Pb-free respectively. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.
20.4 Manual soldering
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 C.
20.5 Package related soldering information
Table 52: Package[1] BGA, HTSSON..T[3], LBGA, LFBGA, SQFP, SSOP..T[3], TFBGA, USON, VFBGA Suitability of surface mount IC packages for wave and reflow soldering methods Soldering method Wave not suitable Reflow[2] suitable suitable
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, not suitable[4] HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS PLCC[5], SO, SOJ LQFP, QFP, TQFP SSOP, TSSOP, VSO, VSSOP CWQCCN..L[8],
[1] [2]
suitable not WQCCN..L[8] recommended[5][6] not recommended[7] not suitable
suitable suitable suitable not suitable
PMFP[9],
For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026); order a copy from your Philips Semiconductors sales office. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
9397 750 11355
Product data
Rev. 01 -- 14 April 2004
43 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding 217 C 10 C measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface. If wave soldering is considered, then the package must be placed at a 45 angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners. Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm. Wave soldering is suitable for SSOP, TSSOP, VSO and VSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm. Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate soldering profile can be provided on request. Hot bar soldering or manual soldering is suitable for PMFP packages.
[3]
[4]
[5] [6] [7]
[8]
[9]
21. Revision history
Table 53: Rev Date 01 20040414 Revision history CPCN Description Product data (9397 750 11355).
9397 750 11355
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
44 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
22. Data sheet status
Level I II Data sheet status[1] Objective data Preliminary data Product status[2][3] Development Qualification Definition This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).
III
Product data
Production
[1] [2] [3]
Please consult the most recently issued data sheet before initiating or completing a design. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.
23. Definitions
Short-form specification -- The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Limiting values definition -- Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information -- Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Right to make changes -- Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status `Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.
25. Licenses
Purchase of Philips I2C components Purchase of Philips I2C components conveys a license under the Philips' I2C patent to use the components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
24. Disclaimers
Life support -- These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
26. Trademarks
I2C-bus -- is a trademark of Koninklijke Philips Electronics N.V.
Contact information
For additional information, please visit http://www.semiconductors.philips.com. For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.
9397 750 11355
Fax: +31 40 27 24825
(c) Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Product data
Rev. 01 -- 14 April 2004
45 of 46
Philips Semiconductors
ISP1301
USB OTG transceiver
Contents
1 2 3 4 5 6 7 7.1 7.2 8 8.1 8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.5 8.6 8.7 8.8 8.9 8.9.1 8.9.2 8.9.3 8.9.4 8.9.5 8.9.6 8.9.7 8.9.8 8.9.9 8.9.10 8.9.11 8.9.12 8.9.13 9 9.1 9.2 9.3 9.4 9.4.1 9.4.2 9.4.3 10 10.1 10.2 11 11.1 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pinning information . . . . . . . . . . . . . . . . . . . . . . 4 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5 Functional description . . . . . . . . . . . . . . . . . . . 7 Serial controller. . . . . . . . . . . . . . . . . . . . . . . . . 7 VBUS charge pump . . . . . . . . . . . . . . . . . . . . . . 7 VBUS comparators. . . . . . . . . . . . . . . . . . . . . . . 7 VBUS valid comparator . . . . . . . . . . . . . . . . . . . 7 Session valid comparator . . . . . . . . . . . . . . . . . 7 Session end comparator. . . . . . . . . . . . . . . . . . 7 ID detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pull-up and pull-down resistors. . . . . . . . . . . . . 8 USB transceiver (ATX) . . . . . . . . . . . . . . . . . . . 8 3.3 V DC-DC regulator . . . . . . . . . . . . . . . . . . . 8 Car kit interrupt detector . . . . . . . . . . . . . . . . . . 8 Detailed description of pins . . . . . . . . . . . . . . . 9 ADR/PSW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 SCL and SDA . . . . . . . . . . . . . . . . . . . . . . . . . . 9 RESET_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 INT_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 OE_N/INT_N. . . . . . . . . . . . . . . . . . . . . . . . . . 10 SE0/VM, DAT/VP, RCV, VM and VP . . . . . . . . 10 DP and DM . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 VBUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 VBAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 C1 and C2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 VDD_LGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 AGND, CGND and DGND. . . . . . . . . . . . . . . . 11 Modes of operation . . . . . . . . . . . . . . . . . . . . . 12 Power modes . . . . . . . . . . . . . . . . . . . . . . . . . 12 Direct I2C-bus mode . . . . . . . . . . . . . . . . . . . . 12 USB modes. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Transparent modes . . . . . . . . . . . . . . . . . . . . . 13 Transparent general-purpose buffer mode . . . 13 Transparent UART mode . . . . . . . . . . . . . . . . 13 Summary tables . . . . . . . . . . . . . . . . . . . . . . . 13 USB transceiver . . . . . . . . . . . . . . . . . . . . . . . . 15 Differential driver. . . . . . . . . . . . . . . . . . . . . . . 15 Differential receiver . . . . . . . . . . . . . . . . . . . . . 15 Serial controller . . . . . . . . . . . . . . . . . . . . . . . . 17 Register map . . . . . . . . . . . . . . . . . . . . . . . . . 17 11.1.1 11.1.2 11.1.3 11.1.4 11.2 11.3 12 12.1 12.2 13 13.1 13.2 13.3 13.3.1 13.3.2 13.4 13.4.1 13.4.2 14 15 16 17 18 19 20 20.1 20.2 20.3 20.4 20.5 21 22 23 24 25 26 Device identification registers. . . . . . . . . . . . . Mode control registers . . . . . . . . . . . . . . . . . . OTG registers. . . . . . . . . . . . . . . . . . . . . . . . . Interrupt related registers . . . . . . . . . . . . . . . . Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . Autoconnect . . . . . . . . . . . . . . . . . . . . . . . . . . Clock wake up scheme . . . . . . . . . . . . . . . . . . Power down event . . . . . . . . . . . . . . . . . . . . . Clock wake up events. . . . . . . . . . . . . . . . . . . 2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . I I2C-bus byte transfer format . . . . . . . . . . . . . . I2C-bus device address . . . . . . . . . . . . . . . . . Write format . . . . . . . . . . . . . . . . . . . . . . . . . . One-byte write . . . . . . . . . . . . . . . . . . . . . . . . Multiple-byte write . . . . . . . . . . . . . . . . . . . . . Read format . . . . . . . . . . . . . . . . . . . . . . . . . . Current address read . . . . . . . . . . . . . . . . . . . Random address read . . . . . . . . . . . . . . . . . . Limiting values . . . . . . . . . . . . . . . . . . . . . . . . Recommended operating conditions . . . . . . Static characteristics . . . . . . . . . . . . . . . . . . . Dynamic characteristics . . . . . . . . . . . . . . . . . Application information . . . . . . . . . . . . . . . . . Package outline . . . . . . . . . . . . . . . . . . . . . . . . Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to soldering surface mount packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . Manual soldering . . . . . . . . . . . . . . . . . . . . . . Package related soldering information . . . . . . Revision history . . . . . . . . . . . . . . . . . . . . . . . Data sheet status. . . . . . . . . . . . . . . . . . . . . . . Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 18 19 20 22 23 24 24 24 26 26 26 26 26 27 28 28 29 31 31 32 35 39 41 42 42 42 42 43 43 44 45 45 45 45 45
(c) Koninklijke Philips Electronics N.V. 2004. Printed in The Netherlands
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Date of release: 14 April 2004 Document order number: 9397 750 11355


▲Up To Search▲   

 
Price & Availability of ISP1301

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X